Comparison of Supervised Learning Classification Methods on Accreditation Data of Private Higher Education Institutions
DOI:
https://doi.org/10.31294/p.v26i1.3306Keywords:
Accreditation Data, logistic regression, K-nearest neighbor, naive bayes, super vector machine, random forestAbstract
This research aims to analyze and compare supervised learning classification methods using a case study of accreditation data for private higher education institutions within the LLDikti Region III contained in BAN-PT. In addition, this research also uses Weka machine learning software in its calculations. The initial step taken is to prepare the software used for supervised learning analysis, then pre-processing the data, namely labeling data that has a categorical data type, after that determining data for testing data. The next step is to test each classification method. The methods used for comparison are logistic regression, K-nearest neighbor, naive bayes, super vector machine, and random forest. Based on the calculation results, the Kappa Statistic and Root mean squared error values obtained are 1 and 0 for the logistic regression method, 0.979 and 0.0061 for the K-nearest neighbor method, 1 and 0.2222 for the super vector machine method, 0.969 and 0.0341 for the naive bayes method, 1 and 0 for the decision tree method, and 0.5776 and 0.1949 for the random forest method, respectively. The logistic regression and decision tree methods in this study get Kappa Statistic and Root mean squared error values of 1 and 0 respectively so that they are said to be good and acceptable, thus the two classification methods are the most appropriate methods and are considered to have the highest accuracy.
References
Fleiss, J. L. (1981) Statistical methods for rates and proportions. 2nd ed. (New York: John Wiley)
Fultriasantri, Indah, & Fajrin (2023). Pemanfaatan Penginderaan Jauh Untuk Mengidentifikasi Kepadatan Bangunan Menggunakan Interpretasi Hibrid Citra Sentinel-2a Di Kota Padang. Jurnal Environmental Science, 6(1), https://doi.org/10.35580/jes.v5i2.43339
I. Kusniawati, S. Subiyanto, & F. J. Amarrohman, "Analisis Model Perubahan Penggunaan Lahan Menggunakan Artificial Neural Network Di Kota Salatiga," Jurnal Geodesi Undip, 9(1), pp. 1-11, Dec. 2019. https://doi.org/10.14710/jgundip.2020.26026
Handayani, F. & Pribadi, F. (2017). Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110. Jurnal Teknik Elektro, 7(1), 19-24. doi:https://doi.org/10.15294/jte.v7i1.8585
Kharisudin, Iqbal., Fajar, Sodik Pamungkas., & Prasetya, Bayu Dwi. Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python, PRISMA-Prosiding Seminar Nasional Matematika, vol. 3, pp. 692-697, Mar. 2020.
Nasrullah, Asmaul Husnah. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 7(2). https://doi.org/10.35329/jiik.v7i2.203
Napitupulu, D. B. (2015). Studi Validitas Dan Realibilitas Faktor Sukses Implementasi E-Government Berdasarkan Pendekatan Kappa. Jurnal Sistem Informasi, 10(2), 70 - 74. https://doi.org/10.21609/jsi.v10i2.388
Sanjaya, Fadil Indra., Heksaputra, Dadang. (2020). Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 7(2), 163-174. https://doi.org/10.35957/jatisi.v7i2.388
Setiawati, Noor Lusty Putri.& Utomo, Agung Priyono. (2017). Model Regresi Logistik Untuk Melihat Pengaruh Faktor Demografis, Self Efficacy, Terhadap Perilaku Mencontek, 6(2). http://dx.doi.org/10.15408/jp3i.v6i2.9172
Supriyadi, R., Gata, W., Maulidah, N., Fauzi, A. (2020). Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah. E-Bisnis: Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 67 - 75. https://doi.org/10.51903/e-bisnis.v13i2.247
Sutoyo, I. (1). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal Pilar Nusa Mandiri, 14(2), 217-224. https://doi.org/10.33480/pilar.v14i2.70
Syarli., & Muin, Asrul Ashari. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi), Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 2(1). https://ejournal.fikom-unasman.ac.id/index.php/jikom/issue/view/3
Witten, Ian H. The WEKA Workbench Fourth Edition Data Mining Practical Machine Learning Tools and Techniques, 2016
https://www.banpt.or.id/direktori/institusi/pencarian_institusi.php
https://c3.ai/glossary/data-science/root-mean-square-error-rmse/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Noviyanto, Mochamad Wahyudi, Sumanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Paradigma is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) , This license permits: Share — copy and redistribute the material in any medium or format for any purpose, even commercially, Adapt — remix, transform, and build upon the material for any purpose, even commercially.