Predicting Graduation Outcomes: Decision Tree Model Enhanced with Genetic Algorithm
DOI:
https://doi.org/10.31294/p.v26i1.3165Keywords:
Decission Tree, Genethic Algorithm, GraduationAbstract
This research aims to improve the accuracy of predicting student permit results in the digital era by utilizing machine learning techniques. The main focus is the use of a Decision Tree (DT) model optimized with a Genetic Algorithm (GA) to overcome the limitations of accuracy and testing of conventional methods. This research began with collecting student academic data, followed by preprocessing to eliminate incompleteness and organize the data format. The DT model is then built and optimized with GA, which is inspired by biological evolutionary processes to improve feature selection and parameter tuning. The results show a significant increase in prediction accuracy, from 86.19% to 87.68%, and an increase in the Area Under Curve (AUC) value from 0.755% to 0.788%. This research not only proves the effectiveness of GA integration in improving DT models, but also paves the way for the application of evolutionary techniques in educational data analysis and other fields. The main contributions of this research include the development of more accurate prediction models and practical applications in educational contexts, with the hope of assisting educational institutions in making more informed decisions for their students.
References
Adibi, M. A. (2019). Single and multiple outputs decision tree classification using bi-level discrete-continues genetic algorithm. Pattern Recognition Letters, 128, 190–196. https://doi.org/10.1016/j.patrec.2019.09.001
Ariyati, I., Rosyida, S., Ramanda, K., Riyanto, V., Faizah, S., & Ridwansyah. (2020). Optimization of the Decision Tree Algorithm Used Particle Swarm Optimization in the Selection of Digital Payments. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012090
Hendra, Azis, M. A., & Suhardjono. (2020). Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/10.32736/sisfokom.v9i1.756
Iqbal, M., Herliawan, I., Ridwansyah, Gata, W., Hamid, A., Purnama, J. J., & Yudhistira. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695.
Nawawi, I. (2024). Optimisasi Pemilihan Fitur Untuk Prediksi Gagal Jantung: Fusion Random Forest Dan Particle Swarm Optimization. Inti, 18(2).
Priyatama, I. M. D., & Ridwansyah. (2022). Klasifikasi Anak Berkebutuhan Khusus Tunagrahita Menggunakan Metode Algoritma C4.5. Paradigma, 24(1), 90–95. https://doi.org/https://doi.org/10.31294/paradigma.v24i1.1087
Ridwansyah, R., Riyanto, V., Hamid, A., Rahayu, S., & Purnama, J. J. (2022). Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree. Paradigma, 24(2), 168–174. https://doi.org/10.31294/paradigma.v24i2.1399
Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180
Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424
Suhardjono, S., Sudradjat, A., Wahid, B. A., Sugiarto, H., & Nurdin, H. (2023). Prediction Of Infant Mortality Using The Decission Tree And Genetic Algorithm Methods. Paradigma, 25(1). https://doi.org/https://doi.org/10.31294/p.v25i1.1819
Suhardjono, Wijaya, G., & Hamid, A. (2019). Prediksi Waktu Kelulusan Mahasiswa Menggunakan SVM Berbasis PSO. Bianglala Informatika, 7(2), 97–101. https://doi.org/10.31294/bi.v7i2.6654.g3731
Wijaya, G. (2024). Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease. 9(1), 136–144. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13112
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sinta Rukiastiandari, Luthfia Rohimah, Aprillia, Fara Mutia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Paradigma is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) , This license permits: Share — copy and redistribute the material in any medium or format for any purpose, even commercially, Adapt — remix, transform, and build upon the material for any purpose, even commercially.