Implementasi Data Mining Untuk Analisa Data Penjualan Cat Menggunakan Algoritma Apriori dan Fp Growth (Studi Kasus PT.Sumbermas Unggul Nastari)

Authors

  • Widi Setiana Universitas Nusa Mandiri
  • Della Andina Universitas Nusa Mandiri
  • Nabhilah Deviani Universitas Nusa Mandiri
  • Numan Musyaffa Universitas Nusa Mandiri

DOI:

https://doi.org/10.31294/larik.v1i2.674

Keywords:

Data Mining, Sales, Apriori, Fp-Growth, Association Rule

Abstract

PT.Sumbermas Unggul Nastari provides paint products with a variety of brands. Every day there is a sale of goods transactions that result in a lot of sales transaction data that accumulates. Researchers are interested in implementing and then comparing two association rule algorithms, namely a priori algorithm and FP-Growth to provide minimum support information that best suits the need to produce the highest frequent itemsets. The results obtained are, JAC with 66% support, JB with 66% support, and results that meet the minimum 70% confidence requirements such as If you buy JAC you will buy JB with 80% confidence, If you buy JB you will buy JAC with 100% confidence.

Author Biographies

Widi Setiana, Universitas Nusa Mandiri

 

 

Numan Musyaffa , Universitas Nusa Mandiri

 

 

Published

2021-12-01

How to Cite

Setiana, W., Andina, D., Deviani, N., & Musyaffa , N. (2021). Implementasi Data Mining Untuk Analisa Data Penjualan Cat Menggunakan Algoritma Apriori dan Fp Growth (Studi Kasus PT.Sumbermas Unggul Nastari). Jurnal Ladang Artikel Ilmu Komputer, 1(2), 59-65. https://doi.org/10.31294/larik.v1i2.674