PENERAPAN METODE NAIVE BAYES DALAM PREDIKSI PENYEBAB KECELAKAAN KERJA CV. DEKA UTAMA

Authors

  • Monica Putri Rahayu Universitas Bina Sarana Informatika
  • Yusti Farlina Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.31294/larik.v1i1.472

Keywords:

Naive Bayes, Work Accident, Accuracy

Abstract

Progress of technology and technology is a necessity for its users. The technology has been widely applied in several fields, one example is the presence of technology in the construction sector that makes it easy for its users to make predictions on the factors that cause construction work accidents. An accident at work is an unexpected and unplanned event. Work accidents can hamper the work and will affect the results and the length of time the work itself. One way to minimize workplace accident’s to predict what factors can cause work accidents. Data mining is one way to get information stored in a large number of databases. Work accident data contained in a construction company is only used as a company report. In reality, the data can provide information that is more than just a report. One of the information that can be taken from the company's occupational accident data is information about the prediction of the causes of work accidents. The method for predicting that produces accurate data is the Naive Bayes method. In this research, 78 sample data were processed to produce an accuracy value of 96.15%.

References

Elisa. (2017). Pembangunan Jembatan Dengan Jasa Kontruksi. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 36-40. https://doi.org/10.30865/komik.v3i1.1664Casadei D, Serra G, Tani K. Implementation of a Direct Control Algorithm for Induction Motors Based on Discrete Space Vector Modulation. IEEE Transactions on Power Electronics. 2007; 15(4): 769-777. (pada contoh ini Vol.15, Issues 4, and halaman 769-777)

Anggraini, A. (2018). Resiko Adanya Kecelakaan Di Tempat Kerja. Kumpulan JurnaL Ilmu Komputer (KLIK), 02(01), 34–44.

BPJS Ketenagakerjaa. (2019). Kasus Kecelakaan Selama tahun 2019. https://www.bpjsketenagakerjaan.go.id/tentang-kami.html

Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data

Susanto, H., & Sudiyatno, S. (2014). Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu. Jurnal Pendidikan Vokasi, 4(2), 222–231. https://doi.org/10.21831/jpv.v4i2.2547.

Rizki, M., Devrika, D., Umam, I. H., & Lubis, F. S. (2020). Aplikasi Data Mining dalam penentuan layout swalayan dengan menggunakan metode MBA. Jurnal Teknik Industri: Jurnal Hasil Penelitian Dan Karya Ilmiah Dalam Bidang Teknik Industri, 5(2), 130.

Published

2021-07-23

How to Cite

Rahayu, M. P., & Farlina, Y. (2021). PENERAPAN METODE NAIVE BAYES DALAM PREDIKSI PENYEBAB KECELAKAAN KERJA CV. DEKA UTAMA. Jurnal Ladang Artikel Ilmu Komputer, 1(1), 21-26. https://doi.org/10.31294/larik.v1i1.472

Issue

Section

Articles